A Model for Gravitational Wave Emission from Neutrino-driven Core-collapse Supernovae
نویسنده
چکیده
Using a suite of progenitor models (12, 15, 20 and 40 M⊙) and neutrino luminosities in two-dimensional (2D) simulations, we investigate the gravitational-wave (GW) emission from postbounce phases of core-collapse supernovae (CCSNe). We characterize the matter GW signatures of prompt convection, steady-state convection, the standing accretion shock instability (SASI) , and asymmetric explosions. The characteristic GW frequency evolves from ∼100 Hz just after bounce to ∼300-400 Hz, with higher frequencies corresponding to higher mass progenitors and models that take longer to explode by the neutrino mechanism. After vigorous convective/SASI motions start, the GW strain amplitude increases roughly tenfold and shows features that strongly correlate with downdrafts striking the protoneutron star (PNS) “surface.” During explosion, the high frequency signal wanes and is replaced by a strong low frequency, ∼10s of Hz, signal that reveals the general morphology of the explosion (i.e. prolate, oblate, or spherical). However, “seeing” the explosion morphology requires direct observations of the GW strain amplitude at low frequencies, and current and near-future GW detectors are sensitive to GW power at frequencies & 50 Hz. In practice, the signature of explosion for these detectors will be the abrupt reduction of detectable GW emission. For the stages before explosion, we propose a model for the source of GW emission that explains the characteristic frequencies and amplitudes. Downdrafts of the postshock-convection/SASI region strike the PNS “surface” with large speeds and are decelerated by buoyancy forces. We find that the GW amplitude is set by the magnitude of deceleration and, by extension, the downdraft’s speed. However, the characteristic frequencies are primarily independent of these speeds (and turnover timescales), but are set by the deceleration timescale, which is in turn set by the buoyancy frequency (Brunt-Väisälä frequency) at the lower boundary of postshock convection. Since the buoyancy frequency is determined by global and local properties, the GW characteristic frequencies are dependent upon a combination of the dense-matter equation of state (EOS) and the specifics that determine the gradients at the boundary, including the mass-accretion-rate history, the EOS at subnuclear densities, and neutrino transport. In summary, detection of GWs from CCSNe may reveal details of the core structure and dynamics of the explosion mechanism. Subject headings: hydrodynamics — instabilities — shock waves — supernovae: general — gravitational waves — dense matter — equation of state — turbulence
منابع مشابه
A new mechanism for gravitational-wave emission in core-collapse supernovae.
We present a new theory for the gravitational-wave signatures of core-collapse supernovae. Previous studies identified axisymmetric rotating core collapse, core bounce, postbounce convection, and anisotropic neutrino emission as the primary processes and phases for the radiation of gravitational waves. Our results, which are based on axisymmetric Newtonian supernova simulations, indicate that t...
متن کاملThe Gravitational Wave Signature of Core-Collapse Supernovae
We review the ensemble of anticipated gravitational-wave (GW) emission processes in stellar core collapse and postbounce core-collapse supernova evolution. We discuss recent progress in the modeling of these processes and summarize most recent GW signal estimates. In addition, we present new results on the GW emission from postbounce convective overturn and protoneutron star g-mode pulsations b...
متن کاملTowards Gravitational Wave Signals from Realistic Core Collapse Supernova Models
We have computed the gravitational wave signal from supernova core collapse using the presently most realistic input physics available. We start from state-of-the-art progenitor models of rotating and non-rotating massive stars, and simulate the dynamics of their core collapse by integrating the equations of axisymmetric hydrodynamics together with the Boltzmann equation for the neutrino transp...
متن کاملFirst targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors
We present results from a search for gravitational-wave bursts coincident with two core-collapse supernovae observed optically in 2007 and 2011. We employ data from the Laser Interferometer Gravitational-wave Observatory (LIGO), the Virgo gravitational-wave observatory, and the GEO 600 gravitational-wave observatory. The targeted core-collapse supernovae were selected on the basis of (1) proxim...
متن کاملGravitational Waves from Stellar Collapse: Correlations to Explosion Asymmetries
The collapse of massive stars not only produces observable outbursts across the entire electromagnetic spectrum but, for Galactic (or near-Galactic) supernovae, detectable signals for ground-based neutrino and gravitational wave detectors. Gravitational waves and neutrinos provide the only means to study the actual engine behind the optical outbursts: the collapsed stellar core. While the neutr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009